ON THE POSSIBLE TYPES OF CRITICAL CASES FOR

LAGRANGE EQUATIONS OF SECOND KIND

PMM Vol. 36, №3, 1972, pp. 390-395 A. N. VEISSENBERG (Yaroslavl') (Received September 22, 1971)

We consider the types of critical cases arising in the general equations of a holonomic scleronomous system in independent coordinates. We examine the system's first-approximation matrix and we study the elementary divisors corresponding to this matrix. We prove a theorem on the stability of the trivial solution in one specific critical case when we use a function which is sign-definite in a part of the variables. After Liapunov's original work 1,2 the critical cases in the general problem of stability of motion were considered in [3]. The algebraic unsolvability of stability problems in sufficiently complex critical cases was pointed out in [4].

1. Suppose that we are given the general equations of motion on a holonomic scleronomous system in independent coordinates

$$\frac{d}{di} \frac{\partial \mathbf{T}}{\partial q_i} - \frac{\partial \mathbf{T}}{\partial q_i} = Q_i \qquad (i = 1, \dots, n)$$
(1.1)

The system's kinetic energy is T = (q)'Aq'/2 + (q)'A(q)q', where A is a constant positive-definite matrix (A > 0). The elements of the matrix A(q) are analytic in the components of vector q, A(0) = 0. The prime denotes the transpose. Let q = q' = 0 be the equilibrium position. By assuming the generalized forces Q_i to be stationary, system (1.1) can be rewritten as [5]

$$dx/dt = y, \qquad dy/dt = Qx + Ly + v (x, y)$$
(1.2)
(q = x, q' = y)

where Q, L are constant matrices; the components of the vector v(x, y) are analytic and of not lower than second order.

The first-approximation is

$$P = \begin{vmatrix} 0 & E \\ Q & L \end{vmatrix}$$
(1.3)

where E is the unit matrix. The matrix P is of even order. We investigate the possibility of appearance in the spectrum $\sigma(P)$ of matrix P of zeros or of pure imaginary numbers, depending on the properties of the matrices Q, L. We study the corresponding types of elementary divisors. Without loss of generality the matrix Q (or L) is taken as having been reduced to a canonic Jordan form. Using the matrix equality

$$\left\| P - \varkappa E \right\| \cdot \left\| \begin{matrix} E & E \\ 0 & \varkappa E \end{matrix} \right\| = \left\| \begin{matrix} -\varkappa E & 0 \\ Q & Q + \varkappa L - \varkappa^2 E \end{matrix} \right\|$$

we can obtain the matrix's characteristic polynomial f(x)

$$f(\mathbf{x}) = (-1)^n \det \|Q + \mathbf{x}L - \mathbf{x}^2 E\|$$
(1.4)

After simple manipulations [6] the matrix $P - \varkappa E$ takes the form

$$\begin{bmatrix} E & 0 \\ 0 & Q + \varkappa L - \varkappa^2 E \end{bmatrix}$$
 (1.5)

On the complex plane we consider the sets

$$\Theta = \{z : \operatorname{Im} z = 0, -\infty < \operatorname{Re} z \leq 0\}$$

$$\Lambda = \{z : \operatorname{Re} z \leq 0\}, \ \Omega = \{z : \operatorname{Re} z = 0\}$$

Theorem 1. 1. The number of zero eigenvalues of matrix P is not less than the number of elementary divisors of the matrix $Q - \lambda E$, corresponding to the zero eigenvalues of the matrix Q.

2. Suppose Q = 0, $L \neq 0$ and let λ^{l} , ..., λ^{k} (g times), $(\lambda - \lambda_{1})^{p_{1}}$, ..., $(\lambda - \lambda_{r})^{p_{r}}$ (r times) be the set of elementary divisors of the matrix $L - \lambda E$ $(l + ... + k = m, m + p_{1} + ... + p_{r} = n)$. Then the elementary divisors of the matrix $P - \kappa E$ are κ , ..., κ (n - g times), κ^{l+1} , ..., κ^{k+1} (g times), $(\kappa - \lambda_{1})^{p_{1}}$, ..., $(\kappa - \lambda_{r})^{p_{r}}$ (r times).

3. Suppose $Q \neq 0$, L = 0, $\sigma(Q) \cap \Theta = \Theta$ and let λ^{l} , ..., λ^{k} (g times), $(\lambda - \lambda_{1})^{p_{1}}$, ..., $(\lambda - \lambda_{r})^{p_{r}}$ (r times) be the set of elementary divisors of the matrix $Q - \lambda E$ ($l + \dots + k = m, m + p_{1} + \dots + p_{r} = n$). Then the elementary divisors of the matrix $P - \kappa E$ are κ^{2l} , ..., κ^{2k} (g times), $(\kappa + i\sqrt{+\lambda_{1}})^{p_{1}}$, $(\kappa - i\sqrt{-\lambda_{1}})^{p_{1}}$, ..., $(\kappa + i\sqrt{-\lambda_{r}})^{p_{r}}$, $(\kappa - i\sqrt{-\lambda_{1}})^{p_{r}}$, $(\kappa - i\sqrt{-\lambda_{1}})^{p_{1}}$, ...,

4. Suppose Q = L = 0. Then the elementary divisors of the matrix $P - \varkappa E$ are \varkappa^2 , ..., \varkappa^2 (*n* times).

Proof. 1. The matrix Q is considered reduced to a Jordan form. We examine the equality $Q_{1} + \kappa I_{1} = \kappa^{2} E_{1} ||P_{11}(\kappa) - P_{12}(\kappa)||$ (1.2)

$$Q + \varkappa L - \varkappa^2 E = \left\| \begin{array}{cc} P_{11}(\varkappa) & P_{12}(\varkappa) \\ P_{21}(\varkappa) & P_{22}(\varkappa) \end{array} \right\|$$
(1.6)

where the square matrices $P_{11}(\varkappa)$, $P_{22}(\varkappa)$ correspond, respectively, to the elementary divisors λ^l , ..., λ^k (g-times), and $(\lambda - \lambda_1)^{p_1}$, ..., $(\lambda - \lambda_r)^{p_r}$ (r times) of the matrix $Q - \lambda E$. We use the relation

$$(-1)^{n} f(\mathbf{x}) = \det || Q + \varkappa L - \varkappa^{2} E || = \sum_{\pi} (\operatorname{sgn} \pi) \alpha_{\pi(1), 1}(\mathbf{x}) \dots \alpha_{\pi(n), n}(\mathbf{x})$$
(1.7)

where the summation extends over all permutations π of the set of all permutations of the integers from one to *n*, where $\alpha_{ij}(\varkappa)$ is the element of the matrix $|| Q + \varkappa L - \varkappa^2 E ||$ at the intersection of the *i*-th row and the *i*-th column. From (1.7) and from the form of the matrices $P_{11}(\varkappa)$, $P_{22}(\varkappa)$ it follows that the polynomial $f(\varkappa)$ does not contain terms with \varkappa to a power less than g.

2. The matrix L is assumed reduced to a Jordan form. We examine the matrix (1.5) under the condition Q = 0. Considering [7] we obtain the desired set of elementary divisors after a union of the elementary divisors of $k \times k$ and $p_r \times p_r$ matrices of the type

Ì	$-\kappa^2$	х	0		×27-	$-\varkappa^2$ \varkappa	• • •	0
l	0	$-\chi^2$	0		0	$\varkappa \lambda_r - \varkappa^2$		0
l	_							
l	• • •	• • •		•]			• • •	
ĺ	0	0	х		0	0		×
ļ	0	0	$-\kappa^2$		0	$\begin{array}{ccc} -\varkappa^2 & \varkappa \\ \varkappa \lambda_r & - \varkappa^2 \\ 0 \\ 0 \end{array}$		$\varkappa\lambda_{r}$ — \varkappa^{2}
l					l			•

It is clear that $\varkappa, \ldots, \varkappa (k-1 \text{ times}), \varkappa^{k+1}$ form the set of elementary divisors of the first matrix; $\varkappa, \ldots, \varkappa (p_r \text{ times}), (\varkappa - \lambda_r)^{p_r}$ form the analogous set for the other matrix. In system (1.3) a critical case is possible only when $\sigma(L) \in \Lambda$.

3. The matrix Q is assumed reduced to a Jordan form. We examine the matrix (1.5) under the condition L = 0. We obtain the desired set of elementary divisors after a union of the elementary divisors of $k \times k$ and $p_r \times p_r$ matrices of the type

$$\begin{vmatrix} -\varkappa^2 & 1 & \dots & 0 \\ 0 & -\varkappa^2 & \dots & 0 \\ \dots & \dots & \dots & \\ 0 & 0 & \dots & 1 \\ 0 & 0 & \dots & -\varkappa^2 \end{vmatrix} , \begin{pmatrix} \lambda_r - \varkappa^2 & 1 & \dots & 0 \\ 0 & \lambda_r - \varkappa^2 & \dots & 0 \\ \dots & \dots & \dots & \\ 0 & 0 & \dots & 1 \\ 0 & 0 & \dots & \lambda_r - \varkappa^2 \end{vmatrix}$$

where \varkappa^{2k} is an elementary divisor of the first matrix. The elementary divisors of the second matrix are obtained after a decomposition of the polynomial $(\lambda_r - \varkappa^2)^{p_r}$ into factors irreducible in the complex number field. If $\lambda_r \in \sigma$ (Q) and $\lambda_r \notin \Theta$, then a simple analysis indicates that among the elementary divisors we can find a corresponding root with positive real part of the equation $f(\varkappa) = 0$. In this case the solution $x \equiv 0$ is unstable. If σ (Q) $\cap \Theta = \Theta$, then the decomposition of the polynomial into irreducible factors yields $(\varkappa + i\sqrt{-\lambda_r})^{p_r}$, $(\varkappa - i\sqrt{-\lambda_r})^{p_r}$.

4. The validity of the item 4 of the Theorem is obvious.

We study the particular cases of the action of forces of various types on a scleronomous system.

Gyroscopic forces of the form $Q_i = \gamma_{i1}q_1 + ... + \gamma_{in}q_n$. The matrix $\Gamma = \|\gamma_{ij}\|_1^n$ is necessarily skew-symmetric. For system (1.2), Q = 0, $L = A^{-1}\Gamma$. It is proved that $\sigma (A^{-1}\Gamma) \oplus \Omega$. The scalar product of vectors is defined by the formula $u \cdot v = u_1 \overline{v}_1 + ... + u_n \overline{v}_n$ (the overbar denotes the complex conjugate); $\Gamma u \cdot u + \Gamma \overline{u} \cdot \overline{u} = 0$ for any u because $\Gamma = -\Gamma'$. If u is an eigenvector of the matrix $A^{-1}\Gamma$, corresponding to an eigenvalue λ , then $\Gamma u = \lambda A u$. Since $\lambda A u \cdot u + \overline{\lambda} A \overline{u} \cdot \overline{u} = 0$ and $A u \cdot u = A \overline{u} \cdot \overline{u} \neq 0$, we have $\lambda + \overline{\lambda} = 0$. On the basis of item 2 of Theorem 1, $\sigma(P) \oplus \Omega$. The matrix $A^{-1}\Gamma$ must be skew-symmetric for the matrices A^{-1} and Γ to commute. It possesses linear elementary divisors in the complex number field. The elementary divisors of the matrix $P - \kappa E$ are of the types \varkappa , \varkappa^2 , $(\varkappa + i\alpha)$, $(\varkappa - i\alpha)$, $(\varkappa - i\alpha)$ correspond to the matrix P.

Dissipative forces $Q_i = -(b_{i1}q_1 + ... + b_{in}q_n)$, $B = || b_{ij} ||_1^n \ge 0$. Here Q = 0, $L = -A^{-1}B$. We have $\sigma (-A^{-1}B) \cong \Theta$. Indeed, if u is an eigenvector of the matrix $-A^{-1}B$, corresponding to an eigenvalue λ , then

$$\lambda = -Bu \cdot u / Au \cdot u$$

We obtain what is required since $Au \cdot u > 0$, $Bu \cdot u \ge 0$. The spectrum $\sigma(P)$ consists of negative numbers and zeros. The matrix $(-A^{-1}B)$ must be symmetric for the matrices A^{-1} and B to commute. It possesses linear elementary divisors in the complex number field. Elementary divisors \varkappa , \varkappa^2 , $(\varkappa + \alpha)$ ($\alpha > 0$) correspond to the matrix P. If, moreover, det $B \neq 0$, then the elementary divisors of $P - \varkappa E$ are simple.

Potential forces $Q_i = -\partial \Pi / \partial q_i$, where

$$\Pi = \frac{1}{2} \sum_{i,j}^{n} b_{ij} q_i q_j, \qquad B \ge 0$$

The system is conservative. Here $Q = -A^{-1}B$, L = 0. The proof of the algebraic fact σ $(-A^{-1}B) \oplus \Theta$ is obtained also from mechanical considerations. We select analytic functions ψ (q) (of not lower than third order) such that the potential energy $\Pi + \psi$ (q) reaches a strict minimum when q = 0. We obtain what is required by using Lagrange's stability theorem and item 3 of Theorem 1. We can assert that in case A^{-1} and B commute and det $B \neq 0$ linear elementary divisors of the types ($\varkappa + i\alpha$), ($\varkappa - i\alpha$) correspond to the matrix P.

2. In the system of Eqs. (1.2) we assume Q = 0, $v(x, 0) \equiv 0$. Then (1.2) admits of the solution $x \equiv c$, $y \equiv 0$ (2.1)

where c is a constant vector. The vector c is said to be admissible if its Euclidean norm |c| is sufficiently small. For system (1.2),

$$v(x, y) = Y(x)y + v^{*}(x, y)$$

The components of the vector $v^*(x, y)$ are of not less than second order in y and Y(0) = L.

Theorem 2. If Q = 0, $v(x, 0) \equiv 0$, and the matrix $Y(c) = ||y_{ij}(c)||_{1}^{n}$ is a Hurwitz matrix, then the solution (2.1) is Liapunov-stable.

Proof. Let $\mu_i(y)$ denote linear forms satisfying the equations

$$\sum_{j=1}^{n} [y_{j_1}(c) y_1 + \ldots + y_{j_n}(c) y_n] \frac{\partial \mu_i}{\partial y_j} = y_i \qquad (i = 1, \ldots, n)$$
(2.2)

System (2.2) is solvable because det Y (c) $\neq 0$. After the change of variables $x = \zeta + \mu(y) + c$, the initial system becomes

$$d\zeta / dt = \zeta (\zeta, y), \qquad dy / dt = Y (c) \quad y + v^{\varepsilon} (\zeta, y)$$

$$(2.3)$$

$$v^{c}(\zeta, y) = v^{*}(\zeta + \mu(y) + c, y) + [Y(\zeta + \mu(y) + c) - Y(c)]y$$
$$\zeta(\zeta, y) = -\sum_{j=1}^{n} v_{j}^{0}(\zeta, y) \frac{\partial \mu(y)}{\partial y_{j}}$$

The vectors $v^{\circ}(\zeta, y)$, $\zeta(\zeta, y)$ are of not less than second order in ζ , y. The trivial solution of system (2.3) is stable [1] because $\zeta(\zeta, 0) \equiv 0$, $v^{\circ}(\zeta, 0) \equiv 0$, and Y (c) is a Hurwitz matrix.

The stability theorem for the trivial solution can be formulated also for the more general system of equations

$$\frac{d\xi}{dt} = \xi(x, y), \qquad \xi(0, 0) = 0, \ \xi = \left\| \frac{x}{y} \right\|$$
(2.4)

where x and y are s and n-dimensional vectors. The components of the vector $\xi(x, y)$ are analytic in x, y; $\xi(x, 0) \equiv 0$. System (2.4) admits of solution (2.1). If solution (2.1) is stable, then for any (small) $\varepsilon > 0$ we can find a number set $X_{\varepsilon}(c)$ possessing the property: let $\alpha \in X_{\varepsilon}(c)$; from $|x(0) - c| < \alpha$, $|y(0)| < \alpha$ follows $|x(t) - c| < \varepsilon$, $|y(t)| < \varepsilon (t \ge 0)$. The set $X_{\varepsilon}(c)$ is contained on the segment $[0, \varepsilon]$; $S(x^{\circ}, h) = \{r: |x - x^{\circ}| = h\}$ is a sphere of radius h with center at x° .

Lemma. Let solution (2.1) be stable for any admissible c. Then, for sufficiently small h, ϵ we can find a number $\beta > 0$ such that

$$\inf_{x \in S \ (0, h)} \sup \mathbf{X}_{\varepsilon}(x) > \beta$$

Proof. We assume the contrary. Then there exists a sequence $\{x^e\}$ $(x^e \in S(0, h))$, such that $\lim [\sup X_{\varepsilon}(x^e)] = 0$. The set S(0, h) is closed (in the Euclidean metric), therefore, $\lim x^e = x^* \in S(0, h)$ as $e \to \infty$. The solution $x \equiv x^*$, $y \equiv 0$ is stable; for $\varepsilon > 0$ we can find $\gamma > 0$ smaller than ε , such that from

$$|x(0) - x^*| < \gamma, \qquad |y(0)| < \gamma$$

follows

$$|x(t) - x^*| < \varepsilon, \qquad |y(t)| < \varepsilon \qquad \text{(for } t \ge 0)$$

In its own turn, for γ we can find a number $\eta>0$ such that from

$$|x(0) - x^*| < \eta, \qquad |y(0)| < \eta$$

follows

$$|x(t) - x^*| < \gamma, \qquad |y(t)| < \gamma \qquad \text{(for } t \ge 0)$$

By choosing the number N sufficiently large we can ensure the fulfillment of the relations ons $|x^e - x^*| < \eta/2, \qquad S(x^e, \eta/2) \subset S(x^*, \eta)$

$$S(x^*, \gamma) \subset S(x^e, \varepsilon), \qquad e \geqslant N$$

Therefore, for any $e \ge N$ from

$$|x(0) - x^{e}| < \eta / 2, \qquad |y(0)| < \eta / 2$$

follows $|x(t) - x^e| < \varepsilon$, $|y(t)| < \varepsilon$ (for $t \ge 0$), i.e., sup $X_{\varepsilon}(x^e) \ge \eta/2$ for $e \ge N$. The contradiction proves the lemma.

Theorem 3. Let solution (2.1) be stable for all admissible c; let there exist a y-positive-definite function V(y) such that $V_{(2.4)} \leq 0$. Then the trivial solution of system (2.4) is stable.

Proof. Let

$$\beta = \inf_{x \in S(0, \varepsilon/2)} \sup X_{\varepsilon/2}(x)$$

On the basis of the lemma, $\beta \neq 0$. For β we can choose $\delta > 0$ such that $|y(t)| < \beta$ follows from the condition

 $|x(0)| < \delta, \qquad |y(0)| < \delta$

for all $t \ge 0$ for which $|x(t)| < \varepsilon / 2$. The possibility of choosing δ is stipulated by the sign-definiteness of V(y) and the negativeness of $V'_{(2.4)}$ (for all x from a sufficiently small neighborhood of zero).

Therefore, even if the representative point leaves the sphere $S(0, \varepsilon / 2)$, it does so only owing to the x coordinate. But then for some t^* we have $|x(t^*)| = \varepsilon / 2$ and $|y(t^*)| < \beta$. The solution $x \equiv x(t^*)$, $y \equiv 0$ is stable. From the meaning of the number β follows $|x(t)| < \varepsilon$. $|y(t)| < \varepsilon / 2 < \varepsilon$ for $t \ge t^*$.

Theorem 3 must be applied to the study of the stability of the trivial solution of the system of equations

$$\frac{dx}{dt} = y + \chi (x, y, z), \qquad \frac{dy}{dt} = v (x, y, z)$$

$$\frac{dz}{dt} = Gz + \zeta (x, y, z)$$
(2.5)

where $x, y, \chi(x, y, z), v(x, y, z)$ are s-dimensional vectors and z, $\zeta(x, y, z)$ are *n*-dimensional vectors; G is a Hurwitz matrix. Liapunov had made a detailed investigation of (2.5) for s = 1. We can easily point out examples of matrices, equivalent to matrices of type (1.3), in the class of first-approximation matrices of system (2.5). Certain of Liapunov's results were carried over in [8 - 10] to the case s > 1 under

the assumption $v(x, 0, 0) \equiv 0$. Without loss of generality, $\chi(x, 0, 0) \equiv 0$, $\zeta(x, 0, 0) \equiv 0$, $v(x, 0, z) \equiv 0$. System (2.5) admits of the solution $x \equiv c, y \equiv 0$, $z \equiv 0$. Under certain assumptions theorems analogous to Theorems 2 and 3 can be formulated for (2.5).

The author thanks V.V. Rumiantsev for valuable advice.

BIBLIOGRAPHY

- Liapunov, A. M., General Problem of the Stability of Motion. Moscow-Leningrad, Gostekhizdat, 1950.
- Liapunov, A. M., Investigation of One of the Singular Cases in the Problem of Stability of Motion. Leningrad, Izd. LGU, 1963.
- Rumiantsev, V. V., The method of Liapunov functions in the stability theory of motion. In: Fifty Years of Mechanics in the USSR, Vol. 1. Moscow, "Nauka" 1968.
- 4. Arnol'd, V.I., The algebraic unsolvability of the stability problem and of the problem of the topological classification of the singular points of systems of differential equations. Uspekhi Mat. Nauk, Vol. 25, N²2, 1970.
- 5. Gantmakher, F.R., Lectures on Analytical Mechanics. Moscow, "Nauka", 1966.
- 6. Chetaev, N.G., Stability of Motion, Moscow, "Nauka", 1965.
- 7. Gantmakher, F. R., Theory of Matrices. Moscow, "Nauka", 1966.
- Sagitov, M.S. and Filatov, A.N., On Liapunov-stability in the critical case of a characteristic equation with an even number of roots equal to zero. PMM Vol. 29, №1, 1965.
- 9. Ngo Van Vyong., On the stability of motion in a certain critical case. PMM Vol. 30, №4, 1966.
- Veissenberg, A. N., On a transformation of a system of differential equations of perturbed motion in the critical case with an even number of zero roots. Izv. Vuzov, Matematika, №11, 1968.

Translated by N.H.C.